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Abstract. Two general problems occur in the analysis of air pollution data;
multiple contaminants and a dependence on both spatial location and time of ob-
servation. Principal Component Analysis (PCA) provides a tool for removing the
interdependence of the contaminant concentrations, in addition an analysis of the
principal components, eigenvectors and eigenvalues provides additional insight into
the dispersion and occurrence of the pollution plume. New models for space-time
variograms and techniques for modelling them have been introduced by De Iaco,
Myers and Posa.

Hourly average concentrations for nitric oxide (NO), nitrogen dioxide (NO2) and
carbon monoxide (CO) measured at 30 stations in 1999 in the Milan district, Italy,
were used for the analysis. These were converted to daily averages and PCA was
applied to each of the 365 data sets (3 contaminants and 30 stations). The eigen-
vectors of the correlation matrices were used to generate principal components,
which can be considered as measures of Total Air Pollution (TAP) in lieu of the
separate contaminant concentrations. These components were treated as samples
from unobserved variates defined over space and time. Space-time variograms were
fitted to these new variates using the product sum model.
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Although linked in these analyses, the principal components and their associated
eigenvectors as well as the scores for each station vs the space-time variogram
models provide two different pictures of the spatial and temporal dispersion of the
contaminants as well as their interaction at different times of the year.

1. Introduction

Air pollution plumes will commonly consist of multiple contaminants with
perhaps two main groupings. One group will consist of contaminants emit-
ted by vehicles (or contaminants resulting from chemical reactions involving
those emitted from vehicles) and a second will consist of contaminants emit-
ted from industrial sources (and their by-products). For either group, the
processes that result in the emission of one contaminant are the same or
related to the emission or formation of others. Hence, rather than focus-
ing on only one contaminant at a time, it is reasonable to consider some
measure of TAP, e.g., a weighted linear combination.

This approach has been applied to an air pollution data set from Milan
district, Italy, involving three contaminants of considerable interest, NO,
NQOy and CO. Ground level measurements are available at 30 locations,
taken hourly for a year. For the purposes of this analysis, the hourly data
have been converted to daily averages.

Let R(s,t) denote a vector valued random function, defined on space-
time, with components R;(s,t), Ra2(s,t) and Rs(s,t). These three compo-
nents will represent the values of NO, NO; and CO at the point (s,t)
in space-time. Using a Linear Coregionalization Model (LCM) for the ma-
trix variogram I'(h) of R(s,t) corresponds to assuming that I'(h) can be
diagonalized, Myers (1994). That is, there is a matrix A such that

ATT(R)A = D(h).

The diagonal entries in D(h) are the variograms of uncorrelated random
functions and such that each of the components of R(s,t) can be written
as linear combinations of these uncorrelated random functions. To deter-
mine A or alternatively to construct the LCM would require modelling not
only the variograms of the three components but also the cross-variograms
for each pair. PCA provides an alternate tool for generating multiple linear
combinations that are uncorrelated. Let X;,4,...,365 denote the data array
for day 7. That is, the entries of X; are the observed values of R(s,%). The
columns correspond to the three contaminants and the rows correspond
to the locations. Let Y; denote the standardized data array (obtained by
subtracting the column mean and dividing by the column standard devia-
tion). Then (1/N;)Y;TY; is the correlation matrix for the data array, where
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N; is the number of locations for day 7. Let U;, V;, W; denote the eigenvec-
tors corresponding to the eigenvalues u;, v;, w; of these correlation matrices.
Then Y;U;, Y;V; and Y;W; are orthogonal weighted linear combinations of
the standardized data for each day. As it will be shown later, the first two
principal component explain a very large percentage of the variance. It is
then reasonable for Y;U;,Y;V; to be considered as the observed values of
two measures of TAP for day ¢,7 = 1,...,365 at the IV; locations. These
measures, selected in a suitable way, as it will be described herein, will
be called TAP1 and TAP2. This data will then be used to model space-
time variograms which in turn will allow interpolating TAP1 and TAP2 to
non-data locations and also to predict their values at future times.

As an alternative to PCA one might model both variograms and cross-
variograms to cokrige linear combinations but this will provide less insight
into the choice of the linear combinations. PCA has been used previously to
avoid the complexity of modelling cross-variograms, e.g., Davis and Greenes
(1983), Myers and Carr (1984). The connections between the use of PCA,
factorial kriging as well as the use of a LCM and diagonalization of the
variogram matrix are discussed in Myers (1994).

These PCA results can be used in several ways to produce a better pic-
ture of the air pollution levels both in space and time. Since each Y;U;, Y;V;
is a weighted linear combination of the columns of the (standardized) data,
the row identifications are retained. That is, each row entry in Y;U; cor-
responds to a location. Hence, the selected combinations, Y;U; and Y;V;,
might be considered as two samples from two different random functions
defined in space-time. One possibility is to apply spatial analysis for each
day separately, e.g., estimate and model (spatial) variograms for each day.
One can then interpolate to construct a contour map of TAP for each day.
A second possibility is to estimate and model a space-time variogram. The
modelling results are given in section 4. These space-time models can be
used for interpolation in space and prediction in time. An examination
of the eigenvalues, the loadings/scores for the eigenvectors/variables and
their behavior in time provides additional insight into the behavior of the
air pollution patterns.

2. Air Pollution in Milan District

Air pollution in the Milan district may be attributed to different factors:
emissions from motor vehicles, manufactoring work and heating systems
during winter. The air pollution monitoring network for NO, NOy and CO
during 1999 is shown in Figure 1. The same figure shows the following

classification of the monitoring stations according to the Premier’s Decree
in 1991: -
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Figure 1. Posting map of 30 survey stations in Milan district and their classification.

— stations characterized by high density population (empty circles);
— stations characterized by heavy traffic (black circles).

NO is an index of air pollution generated by all types of heating systems and
motor vehicles; NO, is a secondary pollutant resulting from the oxidation
of NO in the air. CO is a direct index of contamination resulting from
petrol-driven motor vehicles, in particular, CO emissions increase as the
motor vehicle’s speed decreases.

3. PCA Analysis

One of the purposes of the following analysis is to find simple underlying
components and to attribute physical meaning to them. Figure 2 shows
the eigenvalues, of the correlation matrices for the X;’s, viewed as a time
series. Note that the first component explains approximately 70% of the
total variance for each day although this dominance is reduced in summer.
The second component is more important in summer and together the first
two components explain more than 90% of the total variance for the whole
year. In Figure 3 the loadings of NO and NOy, for the first component,
are compared with the loadings of C'O over the whole year: note that the
contribution of the 3 pollutants is approximately the same over the whole
year. In particular, the loadings of CO are relatively smaller, especially in
summer, than the loadings of the other 2 pollutants. There is an outlier at
i = 360: on that day (the 26th of december) there was an Atlantic storm
conming in from France and it was very foggy in the Milan district. The
atmospheric conditions significantly affected the NO; daily behaviour and
its relation to the other pollutants. For the first component, all the linear
combinations for which the eigenvectors have the sign pattern (+,+,+) for
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Figure 2. Time series for eigenvalues.
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Figure 3. Time series for loadings of the 1st component.

NO, NOy and CO, will be considered. Note that only the 26th of December
has been deleted. Since the loadings, selected in such a way, are all positive
and almost equal, the above linear combinations can be interpreted as a
measure of TAP generated by NO, NO; and CO and this measure will be
called TAP1. In order to identify monitoring stations where TAP1 is critical,
the quartiles of the its distribution have been considered. In Figure 4 the
size of the posting symbol is proportional to the frequency of scores greater
than the 3rd quartile for each monitoring station during the year. Moreover,
the characterization of the stations (empty and black circles) has been
preserved as in Figure 1. Note that the stations where TAP1 presents high
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values are primarily located in heavy traffic area, that is the city of Milan
(central area in the graph) and the northern east of the district. Only two
of the high density population stations are characterized by relatively high
values of TAP1. In Figure 5 the loadings of NO and NOa, for the second
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Figure 4. Map of the survey stations in the Milan district where the values of TAP1
were high.

component, are compared with the loadings for CO over the whole year. As
an eigenvector is only defined up to its sign, the sign of an eigenvector could
change from one day to the next; for this reason, the relative sign has been
studied by fixing the sign of CO to be positive: note that CO contrasts
NQO and NO, for almost the entire year. The second component can be
interpreted as a measure, for each location, of the contrast of CO with
respect to NO and NO,. Then, only those linear combinations for which
the eigenvectors of the second component have the sign pattern (-,-,+) for
NO, NOy and CO, respectively, will be retained. The corresponding linear
combinations will be considered as data for TAP2. As for the first measure,
the quartiles of the TAP2 distribution have been considered. In Figure 6
the size of the posting symbol is proportional to the frequency of scores
greater than the 3rd quartile for each monitoring station during the year.
Moreover, the characterization of the stations (empty and black circles)
has been preserved as in Figure 1. Note that the stations where TAP2
presents high values, that is where the contrast of CO with respect to NO
and NOs is more evident, are primarily located in the peripheral area of
the district and they correspond to stations characterized by high density
population. As this contrast explains a larger variance during summer, the
following phisycal interpretation could be given: NO and NO; naturally
record minimum values in peripheral urban centers, while high values of
CO persist because of the usual urban traffic.
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Figure 6. Map of the survey stations in the Milan district where the values of TAP2
were high.

4. Space-Time Correlation Models

The space-time analysis uses the data for TAP1 and TAP2 at 30 monitoring
stations for 365 days of 1999. TAP1 and TAP2 are considered as space-time
random fields, with general properties as follows:

F=1F(s,¢),(57¢) € DT, (1)

where D C ®2 and T C R,. Assuming that the first and second moments
of F exist, F' can be decomposed as

F(s,t) =m(s,t) + Z(s,1t), (2)
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where Z is a second order stationary stochastic process with the following
first and second order moments:

B(Z(s,t)) = 0, 3)

Cst(h) = Cov(Z(s + hs, t + 1), Z(s, 1)), (4)

Vst(h) = 0.5Var(Z(s + hs,t + hy) — Z(s, 1)), (5)

where h = (hg, ht), (s,5 + hs) € D? and (t,t + hy) € T?. The trend m(s, t)

is the mean function of F' and it is modeled as follows:
m(s,t) = a(s,t) + u,

where
1. as,t) = a(s,t+7) Vse D Ytt+T7€eT,

7
ZZasg—O Vs e D.

afs, t) is called weekly component and p is a constant trend over the year.
Time series analysis has been applied to the data for each location by the
standard technique of moving average estimation by using the FORTRAN
program described in De Cesare, Myers and Posa (2000). If there were fewer
than five consecutive missing values in a time series, the missing values have
been linearly interpolated. Residuals were then generated for all stations
after removing the weekly component.

The simplest way to obtain a space-time variogram or covariance is to
assume some form of separability or to use a metric on space-time. The
latter is not too satisfactory since there is no natural metric for space-time.
It is known that constructing a space-time model as the sum of a spatial
covariance and a temporal covariance can result in a semi-definite function
rather than a positive definite function, Rouhani and Myers (1990). While
the product of a space covariance and a time covariance does produce a valid
model, this method is somewhat restrictive. An example of this construction
for air pollution data is found in De Cesare, Myers and Posa (1997). The
product model was extended to the product-sum model in De Cesare, Myers
and Posa (2001) and further generalized in De Iaco, Myers and Posa (2001).
The generalized product-sum model is of the form:

'Ys,t(hsa ht) = 7s,t(h57 0) i 7S,t(07 ht) oy k’)’s,t(hSa 0)7s,t(07 ht)a (6)

where v 1(hs,0) and v;+(0, h;) are valid spatial and temporal bounded var-
iogram functions and:
(sillys 1(hs,0) + sillys ¢(0, hy) — sillys(hs, ht))

ko= : - L : . 7
(sillys,t(hs,0)sillys £(0, hy)) (7)
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Figure 7. Error bar of monthly sample spatial cross-correlograms between TAP1 and
TAP2.

Theoretical results are given in De laco, Myers and Posa (2001) and a
modification of the GSLIB software (Deutsch and Journel, 1997) to apply
the product-sum model is given in De Cesare, Myers and Posa (2000).

In modelling the separate spatial and temporal variograms, the sills
are chosen so that the sufficient condition of admissibility for vy, ¢ (hs, hy) is
satisfied, namely:

0 < k < 1/max{sill(s(hs,0)); sill(7s,:(0, ht))}. (8)

Note that k is selected in such a way to ensure that the global sill is fitted.

4.1. SPACE-TIME VARIOGRAM MODELLING

Before performing space-time variogram modelling for both deseasonalized
measures of TAP, sample spatial cross-correlograms were computed. The
error bar of monthly averaged cross-correlograms shows that TAP1 and
TAP2 are orthogonal at any scale in space (Figure 7). Let H be the set of
data locations, then the estimator for the spatial variogram at lag r,, with
spatial tolerance Js, is:

Fat(re, 0) = ﬁﬂ STUZ(s + hart) — Z(s, 1), (9)

where the summation is over the set

N(ry) = {(s+ hs,t) € H and (s,t) € H such that ||rs — hsl|| < 05},
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and [N(r,)| is the cardinality of this set. Similarly

1

¥st(0,1¢) = D)

T S (2 (s,t + hy) — Z(s, )%, (10)

where
M(ry) = {(s,t+ hy) € H and (s,t) € H such that ||r; — hs]| < 8},

and |M(r;)| is the cardinality of this set. Figure 8(a) shows the temporal
variogram of TAP1 and TAP2. The weekly seasonality explained by the two
measures of pollution has been removed by performing time series analysis
for each location and residuals of both TAP1 and TAP2 have been used to
compute sample spatial and temporal deseasonalized variograms (Figures
8(b,c)). Fitted models for these together with the resulting space-time
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Figure 8. Sample temporal non deseasonalized (a), temporal (b) and spatial (c) desea-
sonalized variograms for TAP1 and TAP2.

models are given below

+EAPD (s, 0) = 2(1 — exp(—hs/2000)), (11)
YA (s, 0) = 0.7(1 — exp(—h, /2300)), (12)

'y(TApl)(O h ) = 0_34(1 22 eq;p(—4ht)) + 0.29(1 = €$p(—ht/2))7 (13)

Y EAP2(0, hy) = 0.03(1 — exp(—4hy)) + 0.18(1 — ezp(—hy/4),  (14)

and they are shown in Figure 8(b,c). For TAP1 and TAP2, the sill value
Cst(0,0) of vs¢(hs, ht) (called “global”sill in the literature) has been esti-
mated graphically by plotting the spatial-temporal variogram surface of
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Figure 9. Sample space-time variogram surfaces of residuals for TAP1 and TAP2.

the residuals (see Figures 9), in order to compute (7) and generate the
model (6) which can then be used for prediction in space and time. The
“global”sill values for TAP1 and TAP2 are 2.3 and 0.7, respectively. The
resulting space-time admissible models for TAP1 and TAP2 are:

VB4 (B, he) = {54 (R, 0) + 455251 (0, )+
~0.26[7 %AV (g, 00754 (0, y)), (15)
YEAPD (s, hy) = 155D (R, 0) + 4572 (0, )+

—1.43H54%2 (,, 0145472 (0, y)). (16)

5. Summary

NO,NO; and CO air pollution patterns in the Milan district, Italy, dur-
ing 1999 have been analyzed using two measures of TAP. These measures
were constructed as linear combinations of NO, NO; and CO, the weights
were determined by the use of PCA. TAP1 and TAP2 are considered as
random functions defined in space-time. The first and second principal com-
ponent, selected in a suitable way, are considered as daily data for TAP1
and TAP2. This data is used to model space-time variograms using a gener-
alized product sum model. TAP1, which is modeled from the first principal
component, is the most important because the daily first principal com-
ponent explains about 70% of the total variance. The monitoring stations,
which most frequently have high values for the first measure, are primarily
located in heavy traffic area, that is the city of Milan and the northern
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east of the district. Only two of the survey stations in the high population
density sector of the district are characterized by relatively high values of
TAP1. The monitoring stations, which most frequently have high values
for TAP2, are in the high population density sector of the district. In this
sector, especially in the summer, NO and NOs record low values but the
high values of C'O persist because of the usual urban traffic.

Space-time variograms were fitted to the deseasonalized data for TAP1
and TAP2 and the product-sum model can be used for prediction both in
space and time.
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